[see Table 1 for more detail]

Aurora Tank Gold

1m assays yield thick rich high-grade gold near surface

Marmota Limited (ASX: MEU) ("Marmota")

Marmota (ASX:MEU) is very pleased to announce that it has received the detailed 1m assay results from the Aurora Tank 2024 RC drill program. Initial 4m composite results were reported to the ASX on 9 Oct 2024. The detailed high-quality 1m fire assays have revealed thick rich intervals of gold, very close to surface.

New high-grade 1m intercepts over 14 g/t gold include:

```
1m @ 50 g/t gold (from 32m downhole) in Hole 24ATRC075
                                                                ( 7m @ 14 g/t gold )
                                                                ( 3m @ 12 g/t gold )
1m @ 34 g/t gold (from 43m downhole) in Hole 24ATRC030
1m @ 29 g/t gold (from 22m downhole) in Hole 24ATRC014
                                                                ( 8m @ 10 g/t gold )
1m @ 28 g/t gold (from 41m downhole) in Hole 24ATRC044
                                                                 2m @ 16 g/t gold )
1m @ 23 g/t gold (from 36m downhole) in Hole 24ATRC075
                                                                ( 7m @ 14 g/t gold )
1m @ 18 g/t gold (from 16m downhole) in Hole 24ATRC014
                                                                ( 8m @ 10 g/t gold )
1m @ 18 g/t gold (from 18m downhole) in Hole 24ATRC014
                                                                ( 8m @ 10 g/t gold )
                                                                (10m @ 4.4g/t gold )
1m @ 18 g/t gold (from 15m downhole) in Hole 24ATRC020
                                                                ( 3m @ 7 g/t gold )
1m @ 18 g/t gold (from 141m downhole) in Hole 24ATRC025
1m @ 16 g/t gold (from 39m downhole) in Hole 24ATRC033
                                                                ( 5m @ 4.9 g/t gold )
1m @ 16 g/t gold (from 96m downhole) in Hole 24ATRC059
                                                                 2m @ 13 g/t gold )
1m @ 16 g/t gold (from 38m downhole) in Hole 24ATRC083
                                                                 2m @ 10 g/t gold )
1m @ 15 g/t gold (from 29m downhole) in Hole 24ATRC040
                                                                ( 8m @ 4.0 g/t gold )
1m @ 14 g/t gold (from 56m downhole) in Hole 24ATRC090
                                                                ( 4m @ 8.8 g/t gold )
```

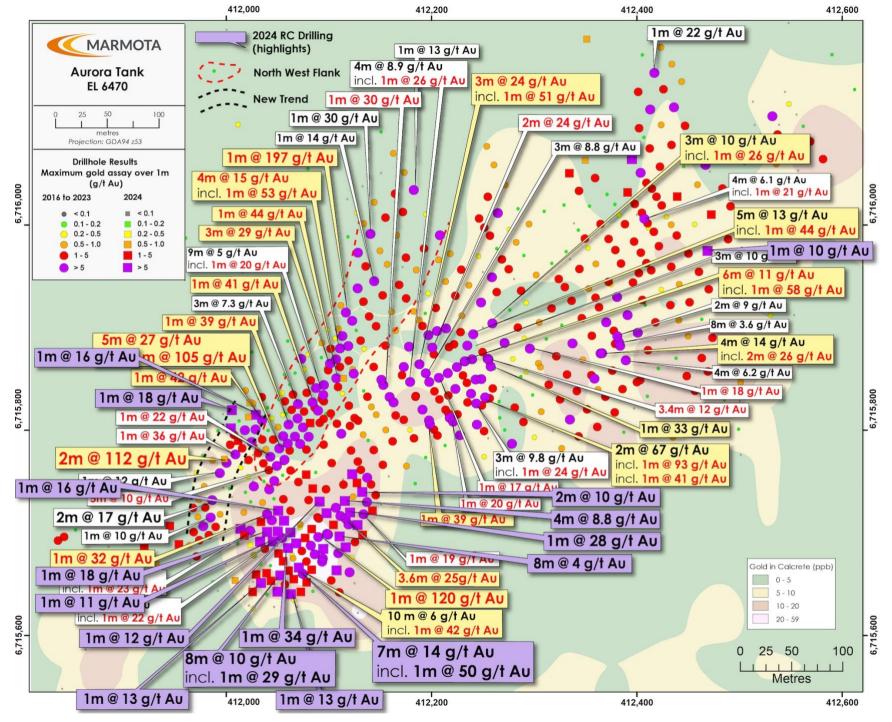


Figure 1: Aurora Tank - Plan Overview (Best downhole gold results)

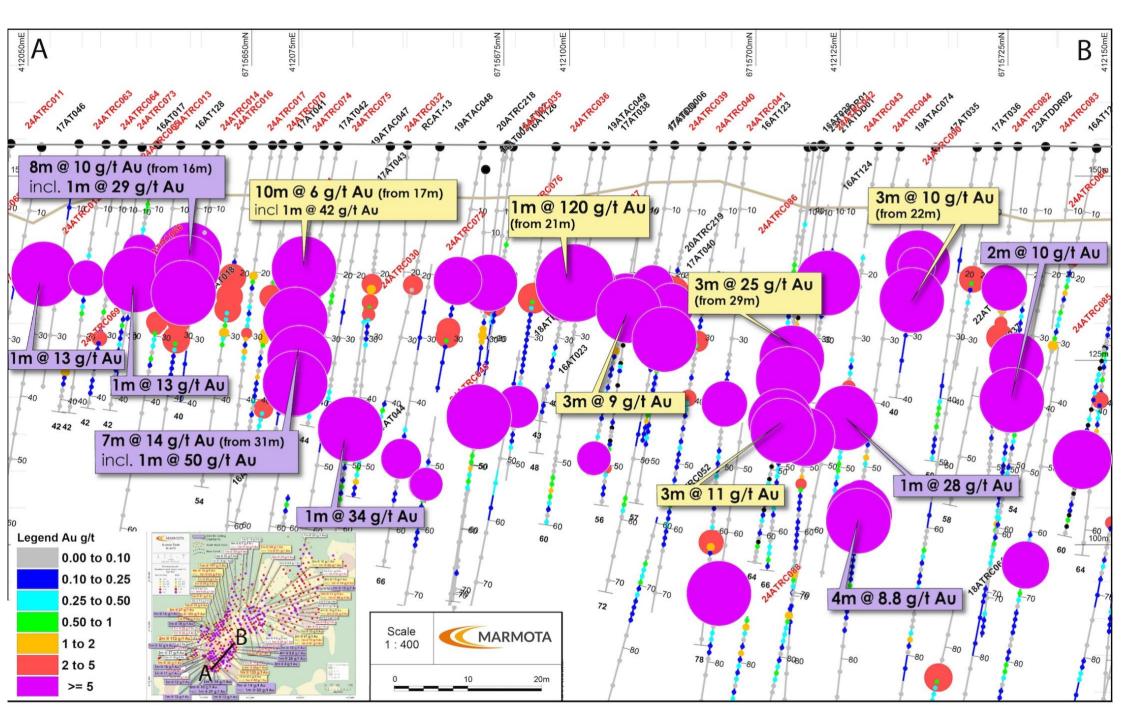


Figure 2: Schematic Section through Southern Zone showing new high-grade extensions (view from A to B on inset plan diagram)

Table 1 Aurora Tank New RC Drilling 2024
Significant 1m Gold Intersections ≥ 10 g/t Au

		I							
Hole ID	Easting	Northing	DIP	AZM	ЕОН	Depth From (m)	Depth To (m)	Intercept Width (m)	Au g/t
24ATRC075	412,071	6,715,666	-60	150	66	31	38	7 m	14
including						32	33	1 m	50
including						36	37	1 m	23
24ATRC030	412,060	6,715,685	-60	150	66	43	44	1 m	34
24ATRC044	412,120	6,715,720	-60	150	90	41	43	2 m	16
including			•	•		41	42	1 m	28
24ATRC012	412,034	6,715,651	-60	150	96	19	20	1 m	13
24ATRC014	412,053	6,715,658	-60	150	48	16	24	8 m	10
including						16	17	1 m	18
including						18	19	1 m	18
including						22	23	1 m	29
24ATRC059	412,029	6,715,815	-60	150	126	96	98	2 m	13
including						96	97	1 m	16
24ATRC025	412,005	6,715,819	-60	150	180	141	142	1 m	18
24ATRC020	412,040	6,715,701	-60	150	66	15	25	10 m	4.4
including						15	16	1 m	18
24ATRC090	412,115	6,715,731	-60	150	120	54	58	4 m	8.8
including		,	1			56	58	2 m	13
24ATRC083	412,132	6,715,740	-60	150	84	32	33	1 m	8.4
and						38	40	2 m	10
including		T	1	1	1	38	39	1 m	16
24ATRC043	412,128	6,715,708	-60	150	102	20	21	1 m	11
24ATRC019	412,045	6,715,691	-60	150	60	14	15	1 m	11
24ATRC040	412,110	6,715,696	-60	150	78	22	30	8 m	4
including		T	ı	ı	1	29	30	1 m	15
24ATRC087	412,091	6,715,730	-60	150	90	67	70	3 m	5.6
including		T	1	1	T	68	69	1 m	12
24ATRC033	412,050	6,715,721	-60	150	72	36	41	5 m	4.9
including		T	1	1	T	39	40	1 m	16
24ATRC013	412,063	6,715,640	-60	150	42	20	21	1 m	13

^{*} Due to angled holes: True Depth from surface = $sin(-60^\circ)$ (Depth in table), where $sin(-60^\circ) \approx 0.87$

Purpose of program: Aurora Tank August/Sept RC

- Program was designed to either close off or expand, as Marmota seeks to define the extent of the open pit at Aurora Tank.
- This is the 11th successive program (AC or RC) at Aurora Tank all of which have yielded high-grade gold.
- Program consisted of 90 holes for 7,692m.
- Program significantly exceeded expectations, finding rich thick high-grade gold to the south, much closer to surface than expected.
- New expanded zone to the south is likely to be one of the most profitable of whole deposit, with thick high-grade intersections and little cover to remove.

Comment

Marmota Chairman, Dr Colin Rose, said:

Everything is coming together for Aurora Tank: high-grade intersections, predominantly close to surface, with excellent metallurgy, making Aurora Tank amenable to low-cost low capex open-pit heap leach methods. The metallurgical testwork is about to complete – and as soon as that is done, we progress to resource work, open-pit design and PFS ... all underpinned by surging gold fundamentals.

Summary Highlights at Aurora Tank include:

•	2m at	112 g/t	gold	from 117m	Hole 22AT024	(incl	1m @ 217 g/t	gold from 118m)
•	3m at	72 g/t	gold	from 66m	Hole 20AT324	(incl	1m @ 197 g/t	gold from 66m)
•	2m at	67 g/t	gold	from 32m	 Hole 17AT021 	(incl	1m @ 93 g/t	gold from 32m)
•	3m at	41 g/t	gold	from 21m	- Hole 19AT049	(incl	1m @ 120 g/t	gold from 21m)
•	5m at	27 g/t	gold	from 38m	Hole 18AT104	(incl	1m @ 105 g/t	gold from 38m)
•	3m at	29 g/t	gold	from 63m	 Hole 20AT200 	(incl	1m @ 74 g/t	gold from 64m)
•	3m at	25 g/t	gold	from 29m	Hole 21ATDD1	(incl	1m @ 36 g/t	gold from 31m)
•	3m at	24 g/t	gold	from 34m	- Hole 18AT065	(incl	1m @ 51 g/t	gold from 35m)
•	7m at	14 g/t	gold	from 31m	Hole 24AT075	(incl	1m @ 50 g/t	gold from 32m)
•	8m at	10 g/t	gold	from 16m	Hole 24AT014	(incl	1m @ 29 g/t	gold from 22m)
•	4m at	15 g/t	gold	from 67m	Hole 19AT162	(incl	1m @ 53 g/t	gold from 69m)
•	4m at	13 g/t	gold	from 54m	Hole 20AT224	(incl	1m @ 42 g/t	gold from 55m)
•	6m at	11 g/t	gold	from 40m	Hole 18AT074	(incl	1m @ 58 g/t	gold from 44m)
•	6m at	11 g/t	gold	from 76m	Hole 22AT025	(incl	1m @ 42 g/t	gold from 77m)
•	5m at	13 g/t	gold	from 41m	Hole 17AT022	(incl	1m @ 44 g/t	gold from 45m)
•	4m at	14 g/t	gold	from 32m	Hole 17AT011	(incl	1m @ 42 g/t	gold from 33m)
•	4m at	10 g/t	gold	from 25m	Hole 16AT043	(incl	1m @ 39 g/t	gold from 27m)
•	9m at	7.5 g/t	gold	from 41m	 Hole 20AT201 	(incl	1m @ 29 g/t	gold from 49m)
•	2m at	24 g/t	gold	from 42m	Hole 22AT034	(incl	1m @ 28 g/t	gold from 43m)
•	2m at	20 g/t	gold	from 46m	Hole 19AT065	(incl	1m @ 39 g/t	gold from 47m)
•	2m at	21 g/t	gold	from 120m	Hole 20AT303	(incl	1m @ 36 g/t	gold from 120m)
•	2m at	17 g/t	gold	from 100m	- Hole 22AT080	(incl	1m @ 22 g/t	gold from 101m)
•	3m at	10 g/t	gold	from 28m	Hole 18AT070	(incl	1m @ 24 g/t	gold from 29m)
•	3m at	12 g/t	gold	from 29m	Hole 17AT045	(incl	1m @ 20 g/t	gold from 30m)
•	3m at	11 g/t	gold	from 22m	Hole 16AT019	(incl	1m @ 23 g/t	gold from 22m)
•	3m at	10 g/t	gold	from 58m	Hole 18AT120	(incl	1m @ 26 g/t	gold from 59m)
•	3m at	10 g/t	gold	from 22m	Hole 17AT035	(incl	1m @ 19 g/t	gold from 23m)
•	3m at	10 g/t	gold	from 28m	Hole 20AT144	(incl	1m @ 23 g/t	gold from 28m)
•	10m at	6 g/t	gold	from 17m	Hole 17AT042	(incl	1m @ 42 g/t	gold from 18m)
•	9m at	5 g/t	gold	from 52m	Hole 20AT198	(incl	1m @ 20 g/t	gold from 52m)
•	4m at	9 g/t	gold	from 28m	Hole 17AT026	(incl	1m @ 26 g/t	gold from 31m)
•	3m at	12 g/t	gold	from 44m	Hole21ATDD14			
•	1m at	47 g/t	gold	from 35m	Hole 19AT051			
•	1m at	44 g/t	gold	from 45m	- Hole 20AT199			
	1m at	34 g/t	gold	from 43m	- Hole 24AT030			
	1m at	33 g/t	gold	from 45m	Hole 20AT167	Depth from	surface = 0.87 x do	wnhole depth in this table.

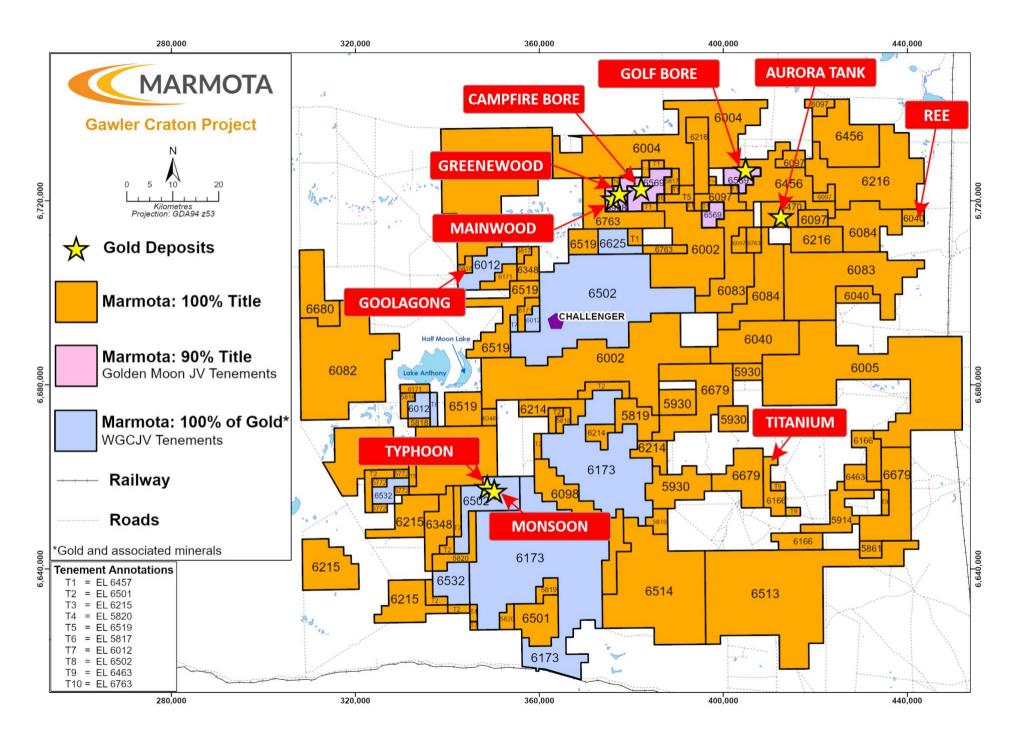


Figure 3: Location of Aurora Tank and adjacent gold discoveries

Follow Marmota on X at: X.com/MarmotaLimited

For further information, please contact:

Marmota Limited

Dr Colin Rose Executive Chairman Email: colin@marmota.com.au

Glenelg SA 5045 ABN: 38 119 270 816 T: (08) 8294 0899 www.marmota.com.au

79-81 Brighton Road

Unit 6

About Marmota Limited

Marmota Limited (ASX:MEU) is a South Australian mining exploration company focused on gold and uranium. Gold exploration is centred on the Company's gold discovery at Aurora Tank that is yielding outstanding intersections in the highly prospective and significantly underexplored Gawler Craton in the Woomera Prohibited Defence Area.

The Company's flagship uranium resource is at Junction Dam adjacent to the Honeymoon mine.

For more information, please visit: www.marmota.com.au

Competent Persons Statement

Information in this Release relating to Exploration Results is based on information compiled by Aaron Brown, who is a Member of The Australian Institute of Geoscientists. He has sufficient experience relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Brown consents to the inclusion in this report of the matters based on this information in the form and context in which they appear.

Where results from previous announcements are quoted, Marmota confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

For details of previous results, see ASX:MEU: 25 Oct 2016, 29 Nov 2016, 23 May 2017, 2 Aug 2017, 12 Jan 2018, 13 Aug 2018, 14 Nov 2018, 17 Jan 2019, 7 May 2019, 31 July 2019, 19 Sept 2019, 28 Jan 2020, 27 Feb 2020, 8 April 2020, 21 May 2020, 4 Feb 2021, 22 Feb 2022, 14 April 2022, 16 June 2022, 18 Aug 2022, 29 Sept 2022, 3 April 2023, 6 July 2023, 13 Dec 2023, 9 Oct 2024.

For the purpose of ASX Listing Rule 15.5, the Board has authorised for this announcement to be released.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more 	 Extensional RC drilling at Aurora Tank was carried out in August/Sept 2024 (ASX:MEU 2 Sept 2024) and included 90 RC holes for 7,692m. Composite 4m samples: 4m composites were first collected using a 50mm PVC tuber 'spear' to collect representative samples from bags. Composite samples were an average weight of 2.1 kg which were pulverised to produce sub samples for lab assay using Aqua Regia. Aqua Regia: Following a 50g aqua regia gold digestion, an aliquot is removed from the resultant liquor and analysed by ICP-MS for Gold.
	explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 4m composite results for Aurora Tank August 2024 RC program were reported ASX:MEU 9 Oct 2024.
		Splits 1m samples:
		 1m splits were collected using the drilling cyclone and kept a the drill site location until the list of 1m samples were prepared from the 4m composite results.
		 Following testing of 4m composite samples down the entire length of the hole, selected 1 metre splits were sent for high quality analysis by Fire Assay.
		 1m splits bags submitted for analysis were an average weight of 2.4kg which were pulverised to produce sub samples for lab analysis using Fire Assay.
		 For Fire Assay, a 50g samples was taken for fire assay and analysed by Atomic Absorption Spectroscopy (AAS) for Gold.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drill Method was Reverse Circulation drilling. Hole diameters are 146mm
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drillholes and sample depths were recorded in hard copy format during drilling including description of lithology and sample intervals. Qualitative assessment of sample recovery and moisture content of drill samples was recorded. Sample recoveries were generally high, and moisture in samples minimal. In some instances, where ground water influx was high, wet/moist samples were collected. The sample system cyclone was cleaned at the end of each hole and as required to minimise down-hole and cross-hole contamination. No relationship is known to exist between sample recovery and grade, in part due to in-ground variation in grade. A potential bias due to loss/gain of fine/coarse material is not suspected.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and % of the relevant intersections logged. 	 All samples were geologically logged by Marmota geologists. The holes have not been geotechnically logged. Geological logging is qualitative. Chip trays containing 1m geological subsamples were collected. 100% of any reported intersections in this announcement have had geological logging completed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Composite samples averaging 2.1 kg were collected for laboratory assay. Composite samples were collected with a 50mm tube by diagonally spearing individual samples within bags. 1m Spilt samples averaging 2.4kg were collected directly off the sample cyclone at 1 metre intervals down the length of the drill hole. The 1m split samples were kept at the drill site a selection of samples was completed from initial 4m composite results. The 1m samples were then collected and dispatched to the lab. It is considered representative samples were collected after homogenizing of sample through drilling cyclone and unbiased spearing of samples in bags. Laboratory sample preparation includes drying and pulverizing of submitted sample to target of p80 at 75 µm. No samples checked for size after pulverizing failed to meet sizing target in the sample batches relevant to the report. Duplicate samples were introduced into the sample stream by the Company.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Samples from Aurora Tank RC holes were analysed in the following manner: • 4m Composites: • ALS were used for analytical work of the 4m composite samples. • ALS Adelaide (Sample Preparation) and ALS Perth (analytical) were used for analytical work of the 4m Composite samples. • Aqua Regia Digest: Analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) of Au. • Splits 1m samples: • ALS were used for analytical work of the 1m split samples. • ALS Adelaide (Sample Preparation) and ALS Perth (analytical) were used for analytical work of the 1m split samples. • Lead Collection Fire Assay was used for Au (50g) and analysed using Atomic Absorption Spectroscopy (AAS). • For all samples, the Company introduced QA/QC samples at a ratio of one QA/QC sample for every 30 drill samples. The laboratory introduced additional QA/QC samples (blanks, standards, checks) at a ratio of greater than 1 QA/QC sample for every 10 samples. • Both the Company and laboratory QA/QC samples indicate acceptable levels of accuracy and precision have been established. • Duplicates were introduced into the sample stream by the Company, The laboratory completed repeat assays on various samples. • Standard samples were introduced into the sample stream by the Company, while the laboratory completed standard assays also.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 An alternative company representative has checked the calculation of the quoted intersections. No twinned holes were drilled in the program. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 For Aurora Tank, drill hole coordinate information was collected using an RTX Differential GPS system with an autonomous accuracy of ± 2.5 centimetres utilising GDA 94 Zone 53. Down hole surveys were undertaken at 30m intervals downhole, or as requested by the geologist. Area is approximately flat lying and topographic control uses SRTM 90 DEM.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes were located to follow up specific geological and mineralisation targets. Drill hole spacing is irregular as indicated in Appendix 2.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill lines were orientated with respect to previously drilled mineralisation and interpreted structure. Therefore, a sampling bias should not have occurred.
Sample security	The measures taken to ensure sample security.	 Company staff collected all laboratory samples. Samples submitted to the laboratory were transported and delivered by Company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audit of data has been completed to date.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Aurora Tank (EL6470) is 100% owned by Marmota Limited. The EL is located approximately 100 km southwest of Coober Pedy in South Australia. There are no third party agreements, non-government royalties, historical sites or environmental issues. Exploration is conducted within lands of the Antakirinja Matu-Yankunytjatjara Native Title Determination Area. The tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration in the Commonwealth Hill region has been carried out by a number of exploration companies previously including: Kennecott Explorations (Australia) Pty Ltd (1968-69) Dampier Mining Co. Ltd (1978-79) Afmeco Pty Ltd (1980-83) Stockdale Prospecting Ltd (1986-87) SADME (1996-97) Minotaur Gold NL (1993-99) Redport Ltd (1997-2002) Apollo Minerals (2013-15).
Geology	Deposit type, geological setting and style of mineralisation.	 All drilling occurred within geology of the Christie Domain of the western Gawler Craton. The Christie Domain is largely underlain by late Archaean Mulgathing Complex which comprises metasedimentary successions interlayered with Banded Iron Formations (BIF), chert, carbonates and calc-silicates. Marmota is targeting Challenger-style Late Archaean gold whilst also considering occurrence of a variety of other mineralisation styles which may exist in the tenement area.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	The required information on drill holes is incorporated into Appendix 2 to the ASX Release.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Any intersections are calculated by simple averaging of 1m samples. Where there are duplicate or repeat samples, an average Au grade is reported. Where aggregated intercepts are presented in the report, they may include shorter lengths of high-grade mineralisation; these shorter lengths are also tabulated. No metal equivalents are reported.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill coverage is considered sufficient to establish approximate true widths due the current geological understanding of mineralisation dip and strike Mineralisation intersections are downhole lengths; exact true widths are unknown but are similar to the intersection lengths as the mineralised zones are approximately normal to hole inclinations.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See Figures within ASX release
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A cut-off grade of 10 g/t (10,000 ppb) gold was applied in reviewing assay results and deemed to be appropriate at this stage in reporting of exploration results. Reporting is considered balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 See ASX Releases: 21 May 2020, 4 Feb 2021, 22 Feb 2022, 14 April 2022, 16 June 2022, 18 Aug 2022, 29 Sept 2022, 3 April 2023, 6 July 2023, 13 Dec 2023 See ASX Releases for Aurora Tank RC drilling 2024: 18 June 2024, 9 July 2024, 2 Sept 2024, 9 Oct 2024.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 See attached release Marmota is currently reviewing results received to date and preparing additional work programs and additional infill and extensional drilling.

Hole ID	Easting (GDA94 z53)	Northing (GDA94 z53)	RL	Dip	Azimuth	EOH Depth
24ATRC001	411,942	6,715,650	154	-60	150	78
24ATRC002	411,932	6,715,669	154	-60	150	96
24ATRC003	411,920	6,715,688	154	-60	150	120
24ATRC004	411,965	6,715,670	155	-60	150	96
24ATRC005	411,954	6,715,689	154	-60	150	126
24ATRC006	411,945	6,715,707	154	-60	150	156
24ATRC007	411,992	6,715,643	155	-60	150	90
24ATRC008	411,987	6,715,652	155	-60	150	90
24ATRC009	412,009	6,715,653	154	-60	150	84
24ATRC010	411,999	6,715,669	154	-60	150	90
24ATRC011	412,047	6,715,628	155	-60	150	72
24ATRC012	412,034	6,715,651	154	-60	150	96
24ATRC013	412,063	6,715,640	154	-60	150	42
24ATRC014	412,053	6,715,658	154	-60	150	48
24ATRC015	412,033	6,715,691	154	-60	150	60
24ATRC016	412,073	6,715,642	154	-60	150	54
24ATRC017	412,066	6,715,655	154	-60	150	54
24ATRC018	412,051	6,715,680	154	-60	150	60
24ATRC019	412,045	6,715,691	154	-60	150	60
24ATRC020	412,040	6,715,701	154	-60	150	66
24ATRC021	412,034	6,715,711	154	-60	150	72
24ATRC022	411,998	6,715,772	154	-60	150	156
24ATRC023	412,011	6,715,790	154	-60	150	174
24ATRC024	412,004	6,715,802	154	-60	150	186
24ATRC025	412,005	6,715,819	154	-60	150	180
24ATRC026	412,023	6,715,827	154	-60	150	174
24ATRC027	412,054	6,715,836	154	-60	150	156
24ATRC028	412,082	6,715,807	154	-60	150	90
24ATRC029	412,114	6,715,850	154	-60	150	96
24ATRC030	412,060	6,715,685	154	-60	150	66
24ATRC031	412,050	6,715,701	154	-60	150	72
24ATRC032	412,083	6,715,664	154	-60	150	54
24ATRC033	412,050	6,715,721	154	-60	150	72
24ATRC034	412,056	6,715,712	154	-60	150	72
24ATRC035	412,107	6,715,663	154	-60	150	42
24ATRC036	412,094	6,715,684	154	-60	150	54
24ATRC037	412,083	6,715,704	154	-60	150	60
24ATRC038	412,125	6,715,651	154	-60	150	42
24ATRC039	412,116	6,715,686	154	-60	150	66
24ATRC040	412,110	6,715,696	154	-60	150	78
24ATRC041	412,104	6,715,708	154	-60	150	90
24ATRC042	412,133	6,715,698	154	-60	150	66
24ATRC043	412,128	6,715,708	154	-60	150	102

24ATRC044	412,120	6,715,720	154	-60	150	90
24ATRC045	412,062	6,715,700	154	-60	150	72
24ATRC046	412,022	6,715,813	154	-60	150	174
24ATRC047	412,350	6,716,063	153	-60	150	114
24ATRC048	412,351	6,716,181	153	-60	150	120
24ATRC049	412,354	6,716,218	152	-60	150	102
24ATRC050	412,357	6,716,252	152	-60	150	102
24ATRC051	412,373	6,716,263	152	-60	150	102
24ATRC052	412,334	6,716,050	153	-60	150	108
24ATRC053	412,391	6,716,032	153	-60	150	114
24ATRC054	412,395	6,716,064	153	-60	150	132
24ATRC055	412,439	6,716,028	153	-60	150	120
24ATRC056	412,469	6,715,975	153	-60	150	96
24ATRC057	412,473	6,716,010	153	-60	150	114
24ATRC058	412,445	6,716,057	153	-60	150	126
24ATRC059	412,029	6,715,815	154	-60	150	126
24ATRC060	412,022	6,715,629	154	-60	150	42
24ATRC061	412,017	6,715,638	154	-60	150	42
24ATRC062	412,034	6,715,669	154	-60	150	42
24ATRC063	412,056	6,715,632	154	-60	150	42
24ATRC064	412,050	6,715,642	154	-60	150	42
24ATRC065	412,043	6,715,653	154	-60	150	42
24ATRC066	412,039	6,715,661	154	-60	150	42
24ATRC067	412,022	6,715,648	154	-60	150	42
24ATRC068	412,026	6,715,642	154	-60	150	42
24ATRC069	412,029	6,715,659	154	-60	150	42
24ATRC070	412,061	6,715,663	154	-60	150	72
24ATRC071	412,055	6,715,672	154	-60	150	48
24ATRC072	412,068	6,715,690	154	-60	150	66
24ATRC073	412,069	6,715,628	154	-60	150	36
24ATRC074	412,078	6,715,652	154	-60	150	66
24ATRC075	412,071	6,715,666	154	-60	150	66
24ATRC076	412,077	6,715,695	154	-60	150	78
24ATRC077	412,122	6,715,675	154	-60	150	54
24ATRC078	412,028	6,715,678	154	-60	150	60
24ATRC079	412,023	6,715,688	154	-60	150	72
24ATRC080	412,018	6,715,697	154	-60	150	60
24ATRC081	412,014	6,715,704	154	-60	150	66
24ATRC082	412,142	6,715,721	154	-60	150	48
24ATRC083	412,132	6,715,740	154	-60	150	84
24ATRC084	412,127	6,715,749	154	-60	150	96
24ATRC085	412,122	6,715,757	154	-60	150	126
24ATRC086	412,097	6,715,719	154	-60	150	78
24ATRC087	412,091	6,715,730	154	-60	150	90
24ATRC088	412,084	6,715,743	154	-60	150	102
24ATRC089	412,078	6,715,757	154	-60	150	114
24ATRC090	412,115	6,715,731	154	-60	150	120

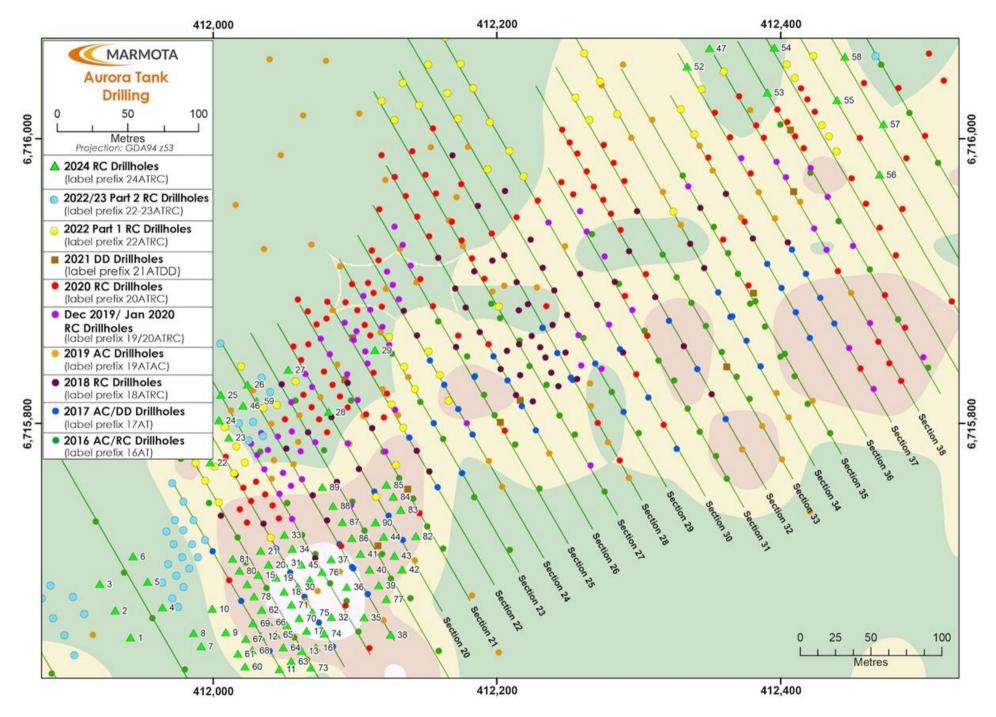


Figure 4: Aurora Tank - Drill Collars to present (Main zone)